Package: CoOL 1.1.2
CoOL: Causes of Outcome Learning
Implementing the computational phase of the Causes of Outcome Learning approach as described in Rieckmann, Dworzynski, Arras, Lapuschkin, Samek, Arah, Rod, Ekstrom. 2022. Causes of outcome learning: A causal inference-inspired machine learning approach to disentangling common combinations of potential causes of a health outcome. International Journal of Epidemiology <doi:10.1093/ije/dyac078>. The optional 'ggtree' package can be obtained through Bioconductor.
Authors:
CoOL_1.1.2.tar.gz
CoOL_1.1.2.zip(r-4.5)CoOL_1.1.2.zip(r-4.4)CoOL_1.1.2.zip(r-4.3)
CoOL_1.1.2.tgz(r-4.4-x86_64)CoOL_1.1.2.tgz(r-4.4-arm64)CoOL_1.1.2.tgz(r-4.3-x86_64)CoOL_1.1.2.tgz(r-4.3-arm64)
CoOL_1.1.2.tar.gz(r-4.5-noble)CoOL_1.1.2.tar.gz(r-4.4-noble)
CoOL_1.1.2.tgz(r-4.4-emscripten)CoOL_1.1.2.tgz(r-4.3-emscripten)
CoOL.pdf |CoOL.html✨
CoOL/json (API)
# Install 'CoOL' in R: |
install.packages('CoOL', repos = c('https://synergisticcauselearning.r-universe.dev', 'https://cloud.r-project.org')) |
This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.
Last updated 3 years agofrom:39bc59ed97. Checks:OK: 1 NOTE: 8. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Oct 25 2024 |
R-4.5-win-x86_64 | NOTE | Oct 25 2024 |
R-4.5-linux-x86_64 | NOTE | Oct 25 2024 |
R-4.4-win-x86_64 | NOTE | Oct 25 2024 |
R-4.4-mac-x86_64 | NOTE | Oct 25 2024 |
R-4.4-mac-aarch64 | NOTE | Oct 25 2024 |
R-4.3-win-x86_64 | NOTE | Oct 25 2024 |
R-4.3-mac-x86_64 | NOTE | Oct 25 2024 |
R-4.3-mac-aarch64 | NOTE | Oct 25 2024 |
Exports:CoOL_0_binary_encode_exposure_dataCoOL_0_common_simulationCoOL_0_complex_simulationCoOL_0_confounding_simulationCoOL_0_mediation_simulationCoOL_0_working_exampleCoOL_1_initiate_neural_networkCoOL_2_train_neural_networkCoOL_3_plot_neural_networkCoOL_4_AUCCoOL_4_predict_risksCoOL_5_layerwise_relevance_propagationCoOL_6_calibration_plotCoOL_6_dendrogramCoOL_6_individual_effects_matrixCoOL_6_number_of_sub_groupsCoOL_6_sub_groupsCoOL_6_sum_of_individual_effectsCoOL_7_prevalence_and_mean_risk_plotCoOL_8_mean_risk_contributions_by_sub_groupCoOL_9_visualised_mean_risk_contributionsCoOL_9_visualised_mean_risk_contributions_legendCoOL_defaultcpp_train_network_relurandomrcpprelurcpprelu_negrelu
Dependencies:bootclassclassIntcliClustGeocolorspacedata.tableDBIdeldire1071fansifarverggplot2gluegtableisobandKernSmoothlabelinglatticelifecyclemagrittrMASSMatrixmgcvmltoolsmunsellnlmepillarpkgconfigplyrpROCproxyR6RColorBrewerRcppRcppArmadillorlangs2scalessfspspDataspdeptibbleunitsutf8vctrsviridisLitewesandersonwithrwk